
Containers and HPC:
Singularity at Leeds

Martin Callaghan
Advanced Research Computing, University of Leeds
www.arc.leeds.ac.uk



Introduction
I’m Martin Callaghan

Research Computing Consultant at the University of Leeds



This talk
● Introductions and ethos
● Our journey to containerisation
● Supporting users
● Our approach to building containers
● Case Study 1: Deep Learning and GPUs
● Case Study 2: WRF and MPI
● Case Study 3: R and ‘strange’ dependencies
● Conclusion and Questions



HPC and Research Computing at Leeds
Small team (just 4 of us)

5 clusters (~15000 cores, GPUs, Xeon Phis)

~700 active research users

Traditional HPC users

New users in Biological Sciences, Business & Economics, Humanities, Data 
Analytics

Need to remain agile and responsive to changing research needs



Our journey towards containers
Pressure from new (and existing) users:

● New codes & applications
● Interactivity
● Visualisation

Pressure from technology:

● Cloud
● Accelerators
● New languages and paradigms



Managing applications

Environment Modules

Package Management

User codes

Containers

Where do containers fit in our 
current model of supplying and 
supporting applications?



User support and training
HPC and Research Computing isn’t about doing things

FOR or TO

It’s about doing things

WITH

Support, Training, Consultancy and Outreach go a long way towards promoting 
the ethos of WITH and developing trusting partnerships.



ARC training

Introduction to 
HPC

Introduction to 
Application 

Development

HPC Architectures 
and Parallel 

Programming

Introduction to MPI 
and MPI/IO

Data Carpentry

Software Carpentry

Introduction to 
Linux

Containers for 
Research

* HPC and Data 
Analysis

Version control 
with Git and Github

High Performance 
Python

Scientific Python

* Software 
Development 

practices for research

http://arc.leeds.ac.uk/training

Scientific 
Visualisation

ARC/HPC Training Portfolio

* in development

GPU Programming



What’s a container?
Containers allow us to:

● Wrap up a piece of software in a complete filesystem that contains everything 
needed to run: code, runtime, system tools, system libraries all on top of your 
favourite Linux distro.

● Almost a Lightweight VM, but containers share the kernel with other 
containers and processes, running as isolated processes in user space.

● A good way of providing a reproducible environment.



What problems can they help solve?
● Dependency Hell
● Imprecise Documentation
● Barriers to adoption and reuse
● Code rot: esp. outdated software dependencies
● Users who need a ‘special’ and quickly…
● Increasingly, software is available prebuilt in a container (OpenFoam, WRF)
● Sharing stacks

Could use…

VMs, Workflow tools, Package Managers



The case for containers in research

Container technologies can support 
reproducible computational research by 
allowing a complete research environment to 
be scripted and shared.



Our approach to building containers
Layers and templates: Building Blocks

Script everything: no writable containers

Let users do as much as possible (we supply a VM)

No VM or root access?



Singularity workflow



Leverage the available tools
Integrate Github and Singularity for a CI workflow:

Create definition file

PUSH WEBHOOK

PULL

Singularity Hub:
BUILD and TEST

https://singularity-hub.org/
https://singularity-hub.org/


Case Study 1: Deep Learning and GPUs
New researchers with new needs:

● Theano
● Tensorflow
● Keras
● Python
● Jupyter Notebooks

○ Interactive use
○ Batch use



Case Study 1: Solution
Single container with complete stack

Will run Jupyter Notebook

Some (clunky) SSH tunnelling and users can access a JN server running on a 
GPU compute node from their local browser.



Case Study 2: WRF
● WRF= Weather Research and Forecasting

○ A popular climate modelling application
○ Can be a little awkward to install- lots of dependencies

● This was a good opportunity to test out Singularity’s MPI compatibility (we 
used OpenMPI).

● It works
● No appreciable overheads to using the containerised model over regular build



Case Study 3: R and strange dependencies
Fork of R

User familiarity with a single Linux distribution

Cascading and complex dependencies

R container runs as application under SGE as task array to calculate cycling 
routes.



Other interesting possibilities
Apache Spark

NoSQL databases

Windows applications running under WINE

Checkpointing containers with DMTCP

Just using containers for some applications, eg. OpenFOAM



Any questions?


