
Singularity	for	GPU	and	
Deep	Learning

Twin	Karmakharm
Research	Software	Engineer

University	of	Sheffield

30th June	2017

The	RSE	Sheffield	team

• Leads
• Mike	Croucher
• Paul	Richmond

• Members
• Tania	Allard
• Mozhgan	Kabiri	Chimeh
• Will	Furnass
• Twin	Karmakharm
• Anna	Krystalli

Contents

• ShARC	HPC	cluster	at	Sheffield
• Introduction	to	Deep	Learning
• Why	use	GPUs
• Case	study:	Deploying	Caffe
• Enabling	GPUs	in	Singularity	images
• GPU	Management	in	SoGE

The	ShARC	cluster
• Sheffield	Advanced	Research	Computer,	new	High	
Performance	Computing	(HPC)	cluster	at	Sheffield
•CentOS	7	with	Son	of	Grid	Engine	(SoGE)	scheduler
•Infiniband	interconnect

• 124	Normal	memory	nodes	
• 2x8	core	processor	(64GB	RAM,	4GB	per	processor)

• 4	Large	memory	nodes	
• 2x8	core	processor	(256GB	RAM,	16GB	per	processor)

• 8	GPU	units	with	Nvidia	K80
• +	other	private	K80	and	P100	racks

The	ShARC	cluster:	DGX-1

• 8xNvidia	P100	GPUs	(16GB	each)	– 170TFLOPS	of	
computation

• Dual	20-core	Intel	Xeon	E5-2698	v4	2.2Ghz
• 512GB	RAM

What	is	Deep	Learning	(DL)?

• A	sub-category	of	Machine	Learning
• Uses	neural	networks	with	many	hidden	layers

Input	
Layer

Hidden	
Layer

Output	
Layer

Synapse

Neuro
n

What	is	Deep	Learning	(DL)?

• Hierarchy	of	representation/feature	extractors

[Alexnet	– Krizhevsky	et	al.	2012]

A	Neuron	(Perceptron)

• Output	is	a	sum	of	all	input	plus	bias

Linear	Regression

• Fitting	an	optimal	line	through	a	data	set	by	
minimising	error

[http://onlinestatbook.com/2/regression/intro.html]

w

J(w)

Error function

Initial weight

Non-linear	activation	for	real-
world	problems
• Apply	non-linearity	over	output	(Sigmoid	in	this	
case)

• Output	is	between	0	and	1,	value	in	between	is	
‘confidence’

Sigmoid	activation

[Andrew	Ng	– Machine	Learning	module]

Logistic	regression

• Classification	of	data

Multi-class	logistic	regression

• Classify	each	separately
• One	NN	output	for	each	
classification

DL	– Learning	
representation/features
• Hierarchy	of	features

Feature	visualization	of	convolutional	net	trained	on	ImageNet	from	[Zeiler	&	Fergus	2013]

Low-level	feature Trainable	classifierHigh-level	featureMid-level	feature

The	mammalian	visual	cortex	is	
hierarchical
• The	ventral	(recognition)	pathway	in	the	visual	cortex	has	
multiple	stages		Retina	- LGN	- V1	- V2	- V4	- PIT	- AIT

• Lots	of	intermediate	representations

[picture	from	Simon	
Thorpe]

[Gallant	&	Van	Essen]

What	is	Deep	Learning	used	for?

1.	https://news.developer.nvidia.com/real-time-pedestrian-detection-using-cascades-of-deep-neural-networks
2.	http://danielnouri.org/notes/2014/01/10/using-deep-learning-to-listen-for-whales/
3.	https://deepmind.com/research/alphago/
4.	http://www.33rdsquare.com/2015/01/what-do-you-need-to-know-about-deep.html
5.	https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

1. 2. 3.

4. 5.

What	is	Deep	Learning	used	for?

• Handwriting	Recognition
• convert	written	letters	in	to	digital	letters

• Language	Translation
• translate	spoken	and	or	written	languages	(e.g.	Google	
Translate)

• Speech	Recognition
• convert	voice	snippets	to	text	(e.g.	Siri,	Cortana,	and	Alexa)

What	is	Deep	Learning	used	for?

• Image	Classification
• label	images	with	appropriate	categories	(e.g.	Google	
Photos)

• Autonomous	Driving
• enable	cars	to	drive

What	is	Deep	Learning	used	for?

• Examples	of	DL	use	at	the	University	of	Sheffield:
•MultiMT	- Multi-modal	machine	translation
•Audio	source	location	with	microphone	arrays
•Identification	of	sleep	apnoea
•AVCOGHEAR	- multi-modal	hearing	aid	(vision	+	
audio)

Why	is	it	possible	now?

HardwareNew Algorithms

Large training data set

Big Data: Sensor data, structured
and unstructured text, images,
audio, video, databases

Convolution, LSTM

GPUs, TPUs, etc.

Why	use	GPUs?

• GPUs	have	massively	parallel	architecture	
• Designed	for	fast	parallel	floating	point	and	matrix	
operations

• NNs	are	essentially	large	floating	point	and	matrix	
multiplication	problems

Why	use	GPUs?

• Even	inexpensive	consumer	hardware	can	be	used	
to	massively	speed	up	calculation

• Architectures	now	being	optimised	for	NN
• GPU	makers	are	creating	low-level	frameworks	
optimised	for	NN	computation	e.g.	cuDNN

• Support	in	most	DL	packages

Why	use	Singularity?
• Rapid	deployment	of	complex	software	stack
• Easy	to	share	&	test
• Reproducibility
• Avoid	dependencies
• Wealth	of	pre-built	images,	especially	from	
Docker

• We’d	like	to	make	a	single	image	work	for	
• Workstation
• ShARC
• JADE	(Tier	2	HPC	centre)
• Cloud

Deployment:	Global

• Modules
• Software	installed	on	public	network	drive
• Module	files	sets	the	correct	environment	path
• No	root	access,	no	package	managers,	installs	must	be	
isolated

• Great	for	monolithic	packages	or	licensed	software	
e.g.	Matlab

• Very	long	turnaround	- limited	admin	resources
• Difficult	to	test	with	users

Deployment:	Local
• Build	to	home	directory	from	source

• Provide	build	instructions/build	scripts
• Complex	for	new	users
• Install	scripts	can	be	brittle
• Redundant	build	effort

• Anaconda	(python	virtual	environment)
• Many	DL	packages	are	Python-based
• Enables	installation	of	Python	packages	to	user’s	home	
environment

• Not	good	for	mixing	and	matching	compiled	source	
and	pre-built	packages

• Conda	package	can	be	created	for	C++	installs	instead

Deep	Learning	Platforms	&	
Frameworks
• Theano
• Tensorflow	

•Caffe/Caffe2
•Torch/PyTorch
•MatConvNet
•Mxnet
•Deeplearning4j
•Chainer
•CNTK

Users	require	more	than	just	the	
frameworks

• Combination	of	software
• Tensorflow	+	emergence	+	Qt
• Torch	+	OpenNMT

• Custom	software/stack
• Neurokernel	- fruit	fly	brain

• As	a	web	service
• DIGITS

• Audio,	video,	image	and	text	pre	&	post	
processing

• E.g.	OpenCV,	SOX

A	Case	Study:	Deploying	Caffe

• High-level	deep	learning	package
• Great	performance	for	training	and	inferencing,	
written	in	C++

• Used	in	production	environments

A	Case	Study:	Deploying	Caffe
• Install	brittle	even	with	package	managers
• Builds	must	be	isolated,	multiple	versions	are	
offered	for	repeatability	of	experiments	and	
compatibility	of	code

• Caffe	has	>	15	Dependencies
• Module	file	creation/update

• Update	slow	to	update	and	refresh,	dependent	on	
sysadmins

• Difficult	to	share	modules	for	testing

A	Case	Study:	Deploying	Caffe

A	Case	Study:	Deploying	Caffe

• With	Singularity:
• Can	pull	pre-built	image	directly	from	Docker	Hub
• No	difference	in	performance
• Easier	to	share	test	images
• Users	can	create	own	images	or	download	images	pre-
built	images/use	provided	definition	files

• Keep	an	index	of	images	with	associated	metadata
• Image	ID,	OS,	available	software,	versions,	etc.

• But	GPUs	does	not	work	out	of	the	box	(feature	still	
experimental)

Singularity:	Enabling	GPUs	in	
images

• Unlike	VMs,	Singularity	uses	kernel	sharing

[Singularity Keynote - Gregory M. Kurtzer]

Singularity:	Enabling	GPUs	in	
images

• This	means:
• GPU	driver	has	to	be	installed	on	the	host	(kernel	
module	+	libraries	and	executables)

• GPU	driver	files	(libraries	and	executable)	must	also	be	
accessible	in	the	image

Singularity:	Enabling	GPUs	in	
images
• Embedding	files	directly	in	the	image	makes	it	not	

portable
• Requires	all	nodes	to	have	same	driver
• When	updating	the	driver	on	host,	driver	files	must	be	
updated	in	every	image	

Singularity:	Enabling	GPUs	in	
images	at	Sheffield

• Host	sets	of	supported	driver	files	on	a	public	network	
location,	isolated	from	other	lib	files

• Every	image	created	has	additional	folders	(/nvlib	and	/nvbin)	
which	is	mounted	to	the	correct	driver	files

In	%post
echo 'export PATH="/nvbin:$PATH"' >> /environment
echo 'export LD_LIBRARY_PATH="/nvlib:$LD_LIBRARY_PATH"'
 >> /environment

In	the	config	file:
bind path = /mynvdriver/v367.56:/nvbin

bind path = /mynvdriver/v367.56:/nvlib

Singularity:	Enabling	GPUs	in	
images	at	Sheffield
• Configuration	file	per	node-GPU	configuration
• The	same	approach	can	be	used	for	MPI	cluster	that	has	

Infiniband	(OFED	driver)
• And	probably	for	other	similar	driver	installs

GPU	Management:	Ensuring	
Utilisation

• ShARC	uses	Son	of	Grid	Engine	(SoGE)	scheduler
• No	GPU	locking,	everybody	uses	0th	GPU	as	default
• No	GPU	utilisation	monitoring

GPU	Management:	Ensuring	
Utilisation

• CUDA_VISIBLE_DEVICES	env	flag	used	to	lock	
GPUs

• Flag	set	outside	Singularity	image	works	inside	it
• Prolog	script	

• uses	the	proc	interface	to	check	GPU	exist
• creates	a	lock	directory	for	each	GPU	requested

• POSIX	directory	operation	is	atomic
• Epilog	script	unlocks	the	GPU(s)	after	a	job	is	
finished

• We’re	still	working	on	utilisation	monitoring,	
potentially	using	Nvidia	DCGM

Thank	you!
Any	questions?

Tutorial for enabling GPUs on singularity images:
http://gpucomputing.shef.ac.uk/education/creating_gpu_singularity

