
Singularity
CONTAINERS	FOR	HPC	@	CAMBRIDGE

A	WORKSHOP	ON	SINGULARITY	AND	CONTAINERS	 IN	HPC	AND	CLOUD

Bio:	Gregory	M.	Kurtzer
• CEO	of	SingularityWare,	LLC.

• Senior	Architect	at	RStor,	Inc.
• Scientific	Advisor	for	LBNL/DOE/UC
• Open	Source	Work:
• Founder:	Centos	Linux
• Founder	and	project	lead:	Warewulf
• Technical	Steering	Committee	for	OpenHPC
• Founder	and	project	lead:	Singularity

Quote:

“singularity+warewulf+centos:	winning	combo”

Containers

What	do	containers	provide	to	science?

• Reproducible	software	stacks
• Computing	mobility	and	agility,	run	your	workflow	anywhere
• The	ability	to	easily	distribute	and	validate	your	work
• A	reasonable	escape	from	“dependency	hell”
• Control	of	your	own	environment

Quote:

“Users	have	been	asking	for	containers	for	years,	but	
I've	always	resisted.	Singularity	addressed	the	

majority	of	my	complaints	and	couldn't	have	been	
easier	to	install”

Reproducibility

In	Science,	reproducibility	is	of	the	
utmost	importance!

Recreation

Without	having	access	to	the	identical	
environment,	we	end	up	having	to	
recreate	that	environment	from	scratch.

Recreation

Sometimes	the	software	environment	is	
difficult	and	even	impossible	to	recreate!

Recreation

And	sometimes	you	can	get	pretty	close!

Recreation	!=	Reproducibility

!=

Reproducibility	Is	Easy	With	Containers

Quote:

“Singularity	allowed	us	to	use	software	that	was	
otherwise	impossible	to	install	under	SL6,	such	as	

TensorFlow”

Singularity:	To	the	Rescue!

Quote:

“Singularity	is	the	best	option	among	the	big	three	
considerations	for	HPC”

Army Research Laboratory

Singularity:	Overview
• Developed	from	necessity,… and	demands,	and	threats,	and	bribes

• Built	around	a	novel	idea,	talk	to	scientists	and	figure	out	what	they	need

• Designed	specifically	for	reproducibility,	mobility,	computing	agility,	portability	and	ease	of	use

• Seamless	integration	with	other	HPC	software	and	architectures	(RMs,	*MPI*,	IB,	Lustre,	GPU)

• Limits	user’s	privileges,	security	contexts,	access	to	data,	and	blurs	the	line	of	isolation

• Single	file	based	container	images,	archival-able,	standard	permissions,	controls	compliant

• Docker	Hub	compatible

Quote:

“Used	to	get	around	a	GLIBC	version	requirement	for	
binary	distribution	of	the	NCI	GDC	download	tool	on	

CentOS	6”

Singularity:	Creating	a	New	Container
$	singularity	create	/tmp/Centos-7.img

Singularity:	Importing
$	singularity	import	/tmp/Centos-7.img	docker://centos:latest

Singularity:	Bootstrapping
$	sudo singularity	bootstrap	/tmp/Centos-7.img	centos.def

Singularity:	Final	Container	Image

Singularity:	Extreme	Computing	Agility

Quote:

“Singularity	is	a	fabulous	tool	for	providing	forward	
and	backward	software	compatibility	on	clusters	and	

for	reproducibility”

Installation

$ git clone https://github.com/singularityware/singularity.git

$ cd singularity

$./autogen.sh

$./configure –prefix=/usr/local

$ make

$ sudo make install

Initial	Test	
Drive

$	singularity	shell	docker://centos:7
Docker	image	path:	index.docker.io/library/centos:7
Cache	folder	set	to	/home/gmk/.singularity/docker
[1/1]	|===================================|	100.0%
Creating	container	runtime...
Singularity:	Invoking	an	interactive	shell	within	container...

Singularity	centos:7:~/git/singularity>	cat	/etc/redhat-release
CentOS	Linux	release	7.3.1611	(Core)
Singularity	centos:7:~/git/singularity>	exit

Import

$	singularity	create	/tmp/debian.img
Creating	a	new	image	with	a	maximum	size	of	768MiB...
Executing	image	create	helper
Formatting	image	with	ext3	file	system
Done.

$	singularity	import	/tmp/debian.img	docker://debian:latest
Docker	image	path:	index.docker.io/library/debian:latest
Cache	folder	set	to	/home/gmk/.singularity/docker
Importing:	base	Singularity	environment
Importing:	
/home/gmk/.singularity/docker/sha256:cd0a524342efac6edff50
0c17e625735…
Importing:	
/home/gmk/.singularity/metadata/sha256:fe44851d529f465f9a
a107b32351c…

Singularity	
Hub	Pull

$	singularity	pull	shub://researchapps/quantum_state_diffusion
Progress	|===================================|	100.0%
Done.	Container	is	at:	./researchapps-quantum_state_diffusion-
master.img

$	singularity	pull	shub://507
Progress	|===================================|	100.0%
Done.	Container	is	at:	./researchapps-quantum_state_diffusion-
master.img

$	singularity	exec	researchapps-quantum_state_diffusion-
master.img cat	/etc/debian_version
stretch/sid

Singularity:	The	Hub

Singularity	Hub:	The	Workflow

• Have	you	heard	of	GitHub?	If	not,	you	should	check	it	out!	All	the	cool	kids	are	doing	it.

• In	the	root	of	your	GitHub	project,	add	a	bootstrap	definition	file	and	call	it	“Singularity”

• Log	into	http://www.singularity-hub.org and	setup	your	account

• Link	your	GitHub	repository	to	Singularity	Hub

Every	‘push’	to	your	GitHub	repository	will	automatically	trigger	a	container	build,	post	it	to	
Singularity	Hub	and	make	it	available	for	citations!

Singularity Hub:	Container	Collections

Singularity	Hub:	Container	Builds

Singularity	Hub:	Container	Commands

Singularity	Hub:	Container	Bootstrap

Singularity:	Bootstrap	Recipe	Definitions
BootStrap:	docker
From:	ubuntu:latest

%post
apt-get	update
apt-get	-y	install	python3-pip	locales
pip3	install	asciinema
locale-gen	en_US.UTF-8

%environment
LANG=en_US.UTF-8
LANGUAGE=en_US:en
LC_ALL=en_US.UTF-8
export	LANG	LANGUAGE	LC_ALL

%runscript
exec	asciinema "$@"

Base	operating	system	definition

Install	programs	and	workflows

Setup	environment

How	to	“run”	container

RHEL	/	YUM
Bootstrap	
Definition

BootStrap:	yum
OSVersion:	7
MirrorURL:	http://mirror.centos.org/centos-
%{OSVERSION}/%{OSVERSION}/os/$basearch/
Include:	yum

%post
yum	update
yum	–y	install	vim-minimal

%runscript
echo	“Hello	world:	‘$*’”

Debian /	Ubuntu
Bootstrap	
Definition

BootStrap:	debootstrap
OSVersion:	trusty
MirrorURL:	http://us.archive.ubuntu.com/ubuntu/

%post
sed -i 's/$/	universe/'	/etc/apt/sources.list
apt-get	update
apt-get	–y	–force-yes	install	vim

%runscript
echo	“Hello	world:	‘$*’”

Bootstrap	
Process

$	singularity	create	–F	/tmp/debian.img
Creating	a	new	image	with	a	maximum	size	of	768MiB...
Executing	image	create	helper
Formatting	image	with	ext3	file	system
Done.

$	sudo	singularity	bootstrap	/tmp/debian.img	debian.def
Bootstrap	initialization
Checking	bootstrap	definition
Executing	Prebootstrap	module
Executing	Bootstrap	'debootstrap'	module
...
update-alternatives:	using	/usr/bin/vim.basic	to	provide	
/usr/bin/ex	(ex)	in	auto	mode
update-alternatives:	using	/usr/bin/vim.basic	to	provide	
/usr/bin/editor	(editor)	in	auto	mode
Processing	triggers	for	libc-bin	(2.19-0ubuntu6)	...
Done.

Shell	Usage

$	singularity	shell	/tmp/debian.img
Singularity:	Invoking	an	interactive	shell	within	container...

Singularity	debian.img:~/git/singularity>	apt-get	--version
apt	1.0.9.8.4	for	amd64	compiled	on	Dec	11	2016	09:48:19
Supported	modules:
*Ver:	Standard	.deb
Pkg: Debian APT	solver	interface	(Priority	-1000)
*Pkg: Debian dpkg interface	(Priority	30)
S.L:	'deb'	Standard	Debian binary	tree
S.L:	'deb-src'	Standard	Debian source	tree
Idx:	EDSP	scenario	file
Idx:	Debian Source	Index
Idx:	Debian Package	Index
Idx:	Debian Translation	Index
Idx:	Debian dpkg status	file

Singularity	debian.img:~/git/singularity>	cat	/etc/debian_version
8.7

Singularity	debian.img:~/git/singularity>	exit

Exec	Usage

$	singularity	exec	/tmp/debian.img cat	/etc/debian_version
8.7

$	singularity	exec	/tmp/centos.img cat	/etc/redhat-release
CentOS	Linux	release	7.3.1611	(Core)

$	singularity	exec	/tmp/debian.img python
/.singularity.d/actions/exec:	8:	exec:	python:	not	found

$	sudo singularity	exec	--writable	/tmp/debian.img apt-get	install	python
…

$	singularity	exec	/tmp/debian.img python
Python	2.7.9	(default,	Jun	29	2016,	13:08:31)
[GCC	4.9.2]	on	linux2
Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.
>>>

Run	Usage

$	singularity	run	/tmp/debian.img
Hello	World:

$	singularity	run	/tmp/debian.img Testing	123
Hello	World:	Testing	123

$	ls	-l	/tmp/debian.img
-rwxr-xr-x	1	gmk gmk 805306400	May 4	17:32	/tmp/debian.img

$	/tmp/debian.img opt1	opt2
Hello	World:	opt1	opt2

-rwxr-xr-x

Singularity:	Process	Invocation
• The	command	`singularity`	is	invoked,	and	shell	code	evaluates	the	’verb’	and	options

• The	shell	code	hands	off	to	the	backend	binary	bits	via	execv()

• Linux	kernel	namespaces	are	created	depending	on	configuration	and	system	requirements

• The	Singularity	image	is	checked,	parsed	and	mounted	in	the	‘CLONE_NEWNS’	namespace

• Bind	mount	points,	additional	file	systems,	and	hooks	into	the	host	operating	system	are	setup

• Singularity	calls	execv()	again	to	the	appropriate	processes	within	the	container

• Singularity	is	no	longer	running!	It	has	exec’ed itself	out	of	existance!

• Container	process	runs	in	the	foreground,	same	PID	as	original	`singularity`	process

• When	contained	processes	exit,	all	namespaces	collapse	leaving	a	clean	system

Singularity:	The	power	of	the	sys-admin!

• Singularity	configuration	file	controls	what	users	can	and	can	not	do

• Configuration	file	must	be	root	owned	for	it	to	be	trusted	(or	it	fails)

• Enforced	system	specific	limitations,	rules	and	boundaries

• Can	specify	system	specific	file	system	bind	points

• Allows	or	disallows	devices	to	be	available	within	the	container

• Controls	the	user’s	ability	to	specify	user	requested	bind	points

• Paths,	session	directories,	etc..	all	controlled	via	configuration

Singularity:	Security	Model
User	contexts	are	always	maintained	when	the	container	is	launched.

When	launched	by	any	user,	the	programs	inside	the	container	will	all	be	running	as	that	user.	
Any	escalation	pathways	inside	the	container	are	blocked.	Thus…

If	you	want	to	be	root	inside	the	container,
you	must	first	be	root	outside	of	the	container!

Conservation	
of	Privilege

$	whoami
gmk
$	singularity	shell	/tmp/debian.img
Singularity:	Invoking	an	interactive	shell	within	container…

Singularity	debian.img:~/git/singularity>	whoami
gmk

Singularity	debian.img:~/git/singularity>	sudo whoami
sudo:	effective	uid is	not	0,	is	/usr/bin/sudo on	a	file	system	with	
the	'nosuid'	option	set	or	an	NFS	file	system	without	root	
privileges?

Singularity	debian.img:~/git/singularity>	ls	-l	/usr/bin/sudo
-rwsr-xr-x.	1	root	root	136808	Aug	17	13:20	/usr/bin/sudo

Singularity	debian.img:~/git/singularity>	exit

$	sudo singularity	exec	/tmp/debian.img whoami
root

Singularity:	The	Blurred	Lines

• As	mentioned,	user’s	contexts	are	strictly	maintained	and	enforced

• This	means	we	can	safely	blur	the	line	between	container	and	host

• Host/node	resources	can	be	just	as	tangible	from	within	the	container	as	outside

• This	includes	devices,	file	systems	and	paths,	networks,	X11,	etc.

This	allows	containers	to	run	appropriately	on	HPC	resources!

Welcome	to	
the	Matrix,	

Neo.

$	singularity	exec	/tmp/debian.img whoami
$	singularity	exec	/tmp/debian.img pwd
$	singularity	exec	/tmp/debian.img ls	–l
$	singularity	exec	/tmp/debian.img touch	~/test_file

$	singularity	exec	/tmp/debian.img ps auxf
$	singularity	exec	–pid /tmp/debian.img ps auxf

$	singularity	shell	–bind	/usr:/usr_host /tmp/debian.img
$	singularity	shell	–contain	/tmp/debian.img
$	singularity	shell	–home	~/virt_home /tmp/debian.img

$	singularity	exec	–cleanenv /tmp/debian.img env
$	SINGULARITYENV_HELLO=WORLD	singularity	exec	–cleanenv \
>	/tmp/debian.img env

$	singularity	exec	/tmp/debian.img python	my_program.py
$	cat	my_program.py |	singularity	exec	/tmp/debian.img python

$	mpirun singularity	exec	/tmp/my_container.img
/path/to/mpi_program

MPI	example

$	mpirun singularity	exec	/tmp/mycontainer.img \
>	/usr/bin/mpi_ring
Process	0	sending	10	to	1,	tag	201	(4	processes	in	ring)
Process	0	sent	to	1
Process	0	decremented	value:	9
Process	0	decremented	value:	8
Process	0	decremented	value:	7
Process	0	decremented	value:	6
Process	0	decremented	value:	5
Process	0	decremented	value:	4
Process	0	decremented	value:	3
Process	0	decremented	value:	2
Process	0	decremented	value:	1
Process	0	decremented	value:	0
Process	0	exiting
Process	1	exiting
Process	2	exiting
Process	3	exiting

OpenMPI (from	GitHub)
BootStrap:	yum
OSVersion:	7
MirrorURL:	http://mirror.centos.org/centos-%{OSVERSION}/%{OSVERSION}/os/$basearch/
Include:	yum

%post
echo	"Installing	Development	Tools	YUM	group"
yum	-y	groupinstall "Development	Tools"
echo	"Installing	OpenMPI into	container..."
mkdir /tmp/git
cd	/tmp/git
git clone	https://github.com/open-mpi/ompi.git
cd	ompi
./autogen.pl
./configure	--prefix=/usr/local
make
make	install
/usr/local/bin/mpicc examples/ring_c.c -o	/usr/bin/mpi_ring
cd	/
rm -rf /tmp/git
exit	0

OpenFoam
BootStrap:	debootstrap
OSVersion:	trusty
MirrorURL:	http://archive.ubuntu.com/ubuntu/
Include:	bash

%post
apt-get	-y	install	wget apt-transport-https
sed -i 's/main/main	restricted	universe/g'	/etc/apt/sources.list
echo	'deb	http://download.openfoam.org/ubuntu trusty	main'	>>	/etc/apt/sources.list
wget -O	- http://dl.openfoam.org/gpg.key |	apt-key	add	-
apt-get	update
apt-get	-y	install	openfoam4
echo	".	/opt/openfoam4/etc/bashrc"	>>	/environment

Tensorflow
BootStrap:	debootstrap
OSVersion:	stable
MirrorURL:	http://ftp.us.debian.org/debian/

%runscript
exec	/usr/bin/python

%post
apt-get	update
apt-get	-y	install	vim	python-pip	python-dev
pip	install	--upgrade	https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-

cp27-none-linux_x86_64.whl

%test
#	This	runs	usually	less	then	30	minutes	depending	on	your	host	type
python	-m	tensorflow.models.image.mnist.convolutional

Playing	With	Python	Versions
$	python	hello.py
Hello	World	- Python	version	is:	2.7.6

$	singularity	exec	docker://python:latest python	hello.py
Docker	image	path:	index.docker.io/library/python:latest
Cache	folder	set	to	/home/gmk/.singularity/docker
[8/8]	|===================================|	100.0%
Creating	container	runtime...
Hello	World	- Python	version	is:	3.6.1

$	cat	hello.py |	singularity	exec	docker://python:2	python
Docker	image	path:	index.docker.io/library/python:2
Cache	folder	set	to	/home/gmk/.singularity/docker
[3/3]	|===================================|	100.0%
Creating	container	runtime...
Hello	World	- Python	version	is:	2.7.13

Pulling	a	Python	Container
$	singularity	pull	docker://python:latest
Initializing	Singularity	image	subsystem
Opening	image	file:	python-latest.img
Creating	1290MiB	image
Binding	image	to	loop
Creating	file	system	within	image
Image	is	done:	python-latest.img
Docker	image	path:	index.docker.io/library/python:latest
Cache	folder	set	to	/home/gmk/.singularity/docker
Importing:	base	Singularity	environment
…
Done.	Container	is	at:	python-latest.img

$./python-latest.img hello.py
Hello	World	- Python	version	is:	3.6.1

Intel	Python
$	singularity	pull	docker://intelpython/intelpython3_core
Initializing	Singularity	image	subsystem
Opening	image	file:	intelpython3_core.img
Creating	3409MiB	image
Binding	image	to	loop
Creating	file	system	within	image
Image	is	done:	intelpython3_core.img
Docker	image	path:	index.docker.io/intelpython/intelpython3_core:latest
Cache	folder	set	to	/home/gmk/.singularity/docker
[5/5]	|===================================|	100.0%
Importing:	base	Singularity	environment
Importing:	
/home/gmk/.singularity/docker/sha256:8ad8b3f87b378cfae583fef34e47a3c9203847d779961b7351cbf786af0bc09f.tar.gz
Importing:	
/home/gmk/.singularity/docker/sha256:e04db1209ac41bd39089bd10dc2d8160f01c72535f5580b03174c547dd87dcb3.tar.gz
Importing:	
/home/gmk/.singularity/docker/sha256:edc7ae7e687c963bd0d8815fe7c930f6b2ab4a4a08ba2d087618c7b75f31c9a0.tar.gz
Importing:	
/home/gmk/.singularity/docker/sha256:4a7b3487193b243d25027fc902c16b765776a7d02e2487f00c1fa8bcf50dc03c.tar.gz
Importing:	
/home/gmk/.singularity/docker/sha256:0a02d6fdc5d036b311e926ecf9787dfadf1e0f6109b404a92910317e56e08ba4.tar.gz
Importing:	
/home/gmk/.singularity/metadata/sha256:f6d87c41bba10f4649f8daf686d723d315e7a63b2e399e7e8891615a0e13fb3c.tar.gz
Done.	Container	is	at:	intelpython3_core.img

Intel	Python	(cont)
$	singularity	exec	intelpython3_core.img	python	--version
Python	3.5.3	::	Intel	Corporation

$	singularity	exec	intelpython3_core.img	python	hello.py
Hello	World	- Python	version	is:	3.5.3

$	singularity	exec	intelpython2_core.img	python	--version
Python	2.7.13	::	Intel	Corporation

$	singularity	exec	intelpython2_core.img	python	hello.py
Hello	World	- Python	version	is:	2.7.13

Intel	Python:	Bootstrap	Definition
BootStrap:	debootstrap
OSVersion:	trusty
MirrorURL:	http://us.archive.ubuntu.com/ubuntu/

%setup
cp l_python3_pu3_2017.3.052.tgz	$SINGULARITY_ROOTFS/

%post
cd	/
ln	-sf	/proc/mounts	/etc/mtab
tar	xvzf l_python3_pu3_2017.3.052.tgz
cd	l_python3_pu3_2017.3.052
sed -i -e	's/^ACCEPT_EULA=.*/ACCEPT_EULA=accept/'	silent.cfg
./install.sh -s	silent.cfg

%environment
PATH=/opt/intel/intelpython3/bin
LD_LIBRARY_PATH=/opt/intel/intelpython3/lib
export	PATH	LD_LIBRARY_PATH

%runscript
exec	/opt/intel/intelpython3/bin/python	"$@"

Intel	Python:	Building	the	container
$	singularity	create	–size	6144	/tmp/intelpython.img
Initializing	Singularity	image	subsystem
Opening	image	file:	intelpython.img
Creating	6144MiB	image
Binding	image	to	loop
Creating	file	system	within	image
Image	is	done:	/tmp/intelpython.img

$	sudo singularity	bootstrap	/tmp/intelpython.img intelpython.def
Sanitizing	environment
Building	from	bootstrap	definition	recipe
Adding	base	Singularity	environment	to	container
I:	Retrieving	Release
I:	Retrieving	Release.gpg
…
+	cd	l_python3_pu3_2017.3.052
+	sed -i -e	s/^ACCEPT_EULA=.*/ACCEPT_EULA=accept/	silent.cfg
+	./install.sh -s	silent.cfg
Adding	environment	to	container
Adding	runscript
Finalizing	Singularity	container

Intel	Python:	Using	the	container
$	/tmp/intelpython.img --version
Python	3.5.3	::	Intel	Corporation

$	/tmp/intelpython.img hello.py
Hello	World	- Python	version	is:	3.5.3

$	/tmp/intelpython.img
Python	3.5.3	|Intel	Corporation|	(default,	Apr	27	2017,	18:08:47)
[GCC	4.8.2	20140120	(Red	Hat	4.8.2-15)]	on	linux
Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.
Intel(R)	Distribution	for	Python	is	brought	to	you	by	Intel	Corporation.
Please	check	out:	https://software.intel.com/en-us/python-distribution
>>>

Native	GPU	Support	with	Tensorflow
$	singularity	run	--nv docker://tensorflow/tensorflow:latest-gpu
Docker	image	path:	index.docker.io/tensorflow/tensorflow:latest-gpu
Cache	folder	set	to	/home/gmk/.singularity/docker
[19/19]	|===================================|	100.0%
Creating	container	runtime...
[I	01:35:30.575	NotebookApp]	Writing	notebook	server	cookie	secret	to	
/run/user/1000/jupyter/no…
[I	01:35:30.618	NotebookApp]	Serving	notebooks	from	local	directory:	
/home/gmk/git/singularity
[I	01:35:30.618	NotebookApp]	0	active	kernels
[I	01:35:30.618	NotebookApp]	The	Jupyter Notebook	is	running	at:	
http://localhost:8888/?token=0dc…
[I	01:35:30.618	NotebookApp]	Use	Control-C	to	stop	this	server	and	shut	down	all	kernels	(twice	
to…
[W	01:35:30.618	NotebookApp]	No	web	browser	found:	could	not	locate	runnable	browser.
[C	01:35:30.618	NotebookApp]

Copy/paste	this	URL	into	your	browser	when	you	connect	for	the	first	time,
to	login	with	a	token:
http://localhost:8888/?token=0dc9bf2714ebc928562497aa17aad43b8844efd60a985209

Performance	of	Bio-apps

• BWA	Index	and	to	a	lesser	extent	BWA	Mem	are,	in	
these	cases,	CPU/memory	bound

• Samtools Index	and	sort	are	partially	I/O	bound	
(large	quantities	of	small	file)

• Samtools View	is	IOPS	heavy

Shared	memory	MPI	latency	between	
containers
• Same	OS	image	and	libraries	inside	
and	outside	of	container

• Tested	with	Open	MPI	(2.0)

• Both	perform	closely	and	only	subtly	
diverage on	large	messages

Containerized	MPI	Latency	comparison

Open	MPI	2.0.1	with	OSU	Micro	Benchmarks	5.3.2

Quote:

“This	is	a	brilliant	containerization	technology	which	
will	gain	traction	very	quickly”

Use	Case
• Lawrence	Berkeley	Labs	and	UC	Berkeley	use	Singularity	to	support	the	”long	tail	of	science”

• LBNL	is	able	to	run	a	much	wider	breadth	of	jobs	then	what	was	possible	before

• Non-traditional	HPC	scientists	are	able	to	easily	run	their	workflows	on	our	HPC	resources

• Additionally,	some	workflows	have	been	resurrected	from	their	graves!
• RedHat Linux	8.0	based	system,	installed	late	2002
• Software	was	written	by	a	postdoc,	and	was	let	go	after	funding	ended
• Can’t	be	rewritten,	scientists	can’t	recompile	it	on	new	systems,	requires	libraries	no	longer	supported
• The	hardware	lasted	for	15	years,	but	alas	it	finally	failed
• Hard	drive	contents	were	converted	to	a	Singularity	image
• This	15	year	old	workflow	runs	on	the	latest	version	of	Centos	now!

Use	Case

• Nextflow is	a	workflow	management	language	for	data-driven	computational	pipelines

• Nextflow uses	Singularity	to	deploy	large-scale	distributed	scientific	workflows

• Commonly	used	in	genomics	pipelines

• Supports	both	HPC	cluster	and	cloud	based	resources	in	a	portable	manner

• Used	by:

• Center	for	Genomic	Regulation	
(CRG)

• Pasteur	Institute	(France)

• SciLifeLab (Sweden)
• Sanger	Institute	(UK)

Use	Case

• The	NIH	uses	Singularity	to	provide	programs	like	TensorFlow and	OpenCV3	which	are	difficult	
or	impossible	to	run	with	their	current	operating	system

• With	Singularity	they	can	create	”portable	reproducible	data	analysis	pipelines”

• Singularity	allows	the	NIH	to	provide	this	functionality	to	their	users	in	a	secure	environment

• The	system-admins	found	it	easy	and	intuitive	to	use	Singularity

• Some	applications	have	been	installed	into	Singularity	containers	and	used	as	standalone	
programs	via	environment	modules	for	the	users

Use	Case

• Among	standard	HPC	use	cases…

• Researchers	are	using	iPython Notebooks	via	JupyterHub

• iPhython JupyterHub kernels	were	deployed	in	Singularity	containers

• Once	the	container	is	deployed	via	JupyterHub,	the	job	runs	within	the	container	while	
maintaining	access	to	local	node	resources

• This	is	a	multi-user	environment	so	Docker	is	a	non-starter

Use	Case

• ALICE	jobs	are	packaged	into	Singularity	
containers

• Jobs	are	executed	via	Singularity	through	a	
modified	SLURM	script

• At	any	given	moment	in	time,	there	are	about	
2000	Singularity	containers	active	on	the	
system

GSI	Green	Cube
6	stories	tall
30,000	sqft
12	MegaWatts
PUE	=	1.07	(world	record)

Use	Case

• The	OSG	uses	Singularity	to	
provide	a	consistent	runtime	
environment	across	
heterogeneous	resources	
worldwide

• Container	images	are	distributed	
via	CVMFS	to	all	sites

• About	half	a	million	jobs	are	run	
through	Singularity	per	day

Singularity:	Current	Status
• Current	version	2.3.1

• Paper	has	been	published	at	PLOS:	http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177459

• Growth	has	been	hard	to	keep	up	with,	massive	uptake	within	world	wide	HPC	community!

• SingularityWare,	LLC.	has	been	created	to	help	bridge	OSS	to	industry	and	fund	development

• Singularity	will	remain	(now	and	always)	as	open	source	BSD	licensed	software!

• Aside	from	having	money	for	development,	nothing	else	is	changing

I	am	hiring!
Are	you	an	awesome	person	with	a	background	in	C,	systems	knowledge,	security	and/or	kernel?

Join	the	Singularity	team	and	send	me	your	resume!

Coming	Soon:	Data	Containers

• Containers	built	specifically	to	support	data	portability	and	reproducibility

• Similar	to	data	archives,	but	are	container	file	systems	and	can	be	mounted	on	the	host

• Designed	for	object	store	compatibility

• Optimized	for	local/direct	IO	access

• Works	fantastic	for	consolidation	of	massive	numbers	of	small	files

• Integrates	with	Singularity	natively	on	the	host	file	system	or	from	within	a	container

• Use	cases:	Any	applications	that	utilize	direct	POSIX	based	IO	and	need	compatibility	with	
object	stores,	parallel	storage,	or	RDM

Coming	Soon:	RDM

• Research	Data	Management	(RDM)	will	ensure	accessibility	to	scientific	data	and	runtimes

• Everybody	in	science	is	looking	for	an	RDM	solution

• It	is	becoming	commonplace	to	have	RDM	listed	as	a	requirement	in	grants	and	allocations

• We	(SingularityWare)	areworking on	this	problem	with	a	very	strategic	partner

• With	Singularity,	you	can	deal	with	your	container	as	you	would	any	other	scientific	data

• The	scientific	runtime	environment	(container)	then	becomes	a	component	of	your	research	
data	management	plan

• Use	cases:	almost	all	scientific	institutions	everywhere	(academia,	government,	corporate)

Coming	Soon:	Trusted	Computing

• Trusted	computing	is	environment,	application	and	library	verification

• Singularity’s	single	image	containers	are	uniquely	optimized	for	easy	verification

• Verification	could	be	as	easy	as	a	container	file	checksum

• Or	as	“paranoid”	as	a	TPM	verification

• Additionally	passing	the	open	file	descriptor	to	the	container	runtime	allows	verification	from	
within	the	container

• Use	cases:	highly	secure	environments,	medical,	government,	financial,	enterprise

Coming	Soon:	Optimized	Image	Format

• At	present	the	”Singularity	Image”	format	is	basically	an	embedded	POSIX	file	system	with	a	
header offset

• This	forces	POSIX	semantics	everywhere,	when	it	is	not	necessary	and	static	image	sizes

• Singularity	v3	(maybe	a	year	out)	will	support	it’s	own	image	file	system,	designed	specifically	
for	the	agile,	trusted,	container	usage

• This	will	allow	us	to	do	more	things	without	privilege	and	support	more	features

Coming	Soon:	Daemon	Process	Support
• Supporting	background	running	daemon	processes	requires	joining/leaving	containers

• ”Singularity	Init”	will	manage	the	container’s	PID	and	network	namespace

• Parent/child	process	relationships	are	always	maintained

• New	Singularity	verbs:	start,	stop,	status

$	singularity	start	container.img

$	singularity	status	container.img

Container	‘container.img’	is	running

$	singularity	exec	container.img service	start	httpd

$	singularity	exec	container.img ps aux

Coming	Soon:	Orchestration	Support

• Additional	scheduling	paradigms	have	been	highly	
requested

• Namely:	Kubernetes	and	Mesos

• We	have	funding	by	an	outside	entity	(US	.gov)	for	
specifically	this	support

• Deploy	Kubernetes	services	via	Singularity	with
start/stop	functionality

• Use	cases:	Cloud	based	science,	HTC/serial	
computing

Singularity:	Contributors	and	Thanks!

Singularity

• Home	page:								http://singularity.lbl.gov

• GitHub:																https://github.com/singularityware/singularity

• Twitter:	 https://twitter.com/SingularityApp

• Slack:	 https://singularity-container.slack.com/

Singularity
CONTAINERS	FOR	SCIENCE

Gregory	M.	Kurtzer
SingularityWare,	LLC.,	Rstor,	Inc.
Lawrence	Berkeley	National	Laboratory
gmkurtzer@gmail.com

