
Shifter: Fast and consistent HPC workflows using containers

Lucas Benedicic∗, Felipe A. Cruz, Thomas C. Schulthess
Swiss National Supercomputing Centre, CSCS

Lugano, Switzerland
Email: ∗benedicic@cscs.ch

Abstract—In this work we describe the experiences of
building and deploying containers using Docker and Shifter,
respectively. We present basic benchmarking tests that show
the performance portability of certain workflows as well as
performance results from the deployment of widely used non-
trivial scientific applications. Furthermore, we discuss the
resulting workflows through use cases that cover the container
creation on a laptop and their deployment at scale, taking
advantage of specialized hardware: Cray Aries interconnect
and NVIDIA Tesla P100 GPU accelerators.

Keywords-HPC systems, GPU, GPGPU, containers, Docker,
Shifter.

I. INTRODUCTION

Containers are packaged applications in the form of a
standardized unit of software that is able to run on multiple
platforms. In a nutshell, a container packs a software appli-
cation with its filesystem containing the whole environment
that is needed for its execution, i.e., code, runtime tools, and
software dependencies. At run time, a container will share
the operating system kernel of the host machine allowing
containers to start instantly and have a smaller footprint than
other virtualization technologies like hypervisors [1].

Containers have already had a positive impact on devel-
opers and operations alike as the technology:

• simplifies the work of software developers by stream-
lining application packaging as a portable unit, making
building and testing software easier and faster;

• provides self-contained and isolated applications with a
small footprint and low runtime overheads that results
in software that is easier to distribute and deploy.

The use of containers in High Performance Computing
(HPC) has so far and for the most part been exploratory.
High performance software is traditionally built directly
on the target system in order to take advantage of the
specialized hardware. This and other needs that are particular
to HPC have delayed the adoption of container technologies
within such environments. However, efforts exist to develop
container runtimes that specifically target the needs of HPC.
One such project is Shifter [2], a container runtime tailored
for HPC that has been extended to give executing containers
access to host-specific libraries and tools, also enabling
hardware-accelerated features. The work in [3] shows that
a Docker/Shifter workflow can provide performance porta-
bility, natively supporting Graphic Processing Unit (GPU)

accelerators and fast network interconnects, from a work-
station to an HPC system like Piz Daint. The possibility
of consistently delivering such workflows could truly trans-
form the building, testing, distribution, and deployment of
scientific software, enabling qualitatively better computing
workflows.

Leveraging further into their possibilities, containers could
also be used to provide a complete software stack to solve
a particular problem. Using such specialized containers
enables the delivery of readily-available environments that
provide an HPC-compatible software stack. The users would
quickly extend such containers to match a particular problem
instance directly on their workstations. Such specialized
containers can be valuable to traditional HPC users, but
should be of particular value to other scientific domains,
e.g. data sciences communities.

The remainder of this paper is organized as follows.
Section II gives an overview of the Docker and Shifter
technologies. Section III presents a basic workflow for
building Docker containers and deploying them with Shifter.
Section IV presents a selection of use cases that involve
containers highlighting different user workflows.

II. BACKGROUND

In this section we provide a brief overview of a workflow
that consists of: (1) building and testing containers using a
standard laptop, and then (2) deploying and executing them
on an HPC infrastructure while achieving high-performance.
Since this Section is not meant as an in-depth description of
the technologies that enable these workflows, we refer the
reader to Docker [4] and Shifter [2][3] for a comprehensive
discussion on these topics.

A. Docker

Containers are a type of virtualization that operates at
Operating System (OS) level, abstracting the containerized
application from the hardware over which it is run. To
achieve this, container virtualization interfaces containers
with the host system through OS kernel system calls. The
straightforward benefit of virtualizing at the OS level is that
containerized applications have a low processing overhead
and can run on most Linux-based platforms.

Container virtualization works by packaging an applica-
tion into an image that bundles a software application along

with its complete environment, i.e., with everything needed
by the application to ensure its correct execution. The de-
facto format is the Docker image format [4], which is part
of the Docker open-source project that also provides the
tools required to build and pack applications into the self-
contained environment of a container image.

Besides the fact that containers are lightweight and flex-
ible, there are many other benefits that containers bring to
software development and deployment:

• Simple and quick iterations. The lightweight and flex-
ibility of containers along side Docker tools makes
developing, building, and deploying complex software
environment configurations simple.

• Docker containers are portable units of software. Soft-
ware containers are both hardware- and platform-
agnostic making them portable, standardized units of
software.

• Portability and rapid deployment. Container images can
be used across platforms. Moreover, containers can be
started as quickly as a native process running on the
target system.

• Shareable and reproducible self-contained units of soft-
ware. Containers are ready to run units of software and
as such they can be easily shared, and their results
reproduced.

• Increased productivity. The low overhead of contain-
ers allows for interactive development using the same
environment as the production system.

The core of the Docker workflow revolves around two
concepts: an image, which can be understood as an im-
mutable snapshot of the application and its software envi-
ronment; and the container, a runtime instance of an image.

The workflow for working with Docker images and con-
tainers using the docker application centers around four
core operations [5]:

Build Makes use of recipe files called dockerfiles that
describe all the steps needed to build and run
an application. The docker build tool allows
for version-control driven image creation, and
custom images that contain the application and
all its dependencies can be easily created us-
ing dockerfiles. Command: docker build -t
<image>:<tag>

Push Enables the storing of images into both private and
community-driven registries. A registry is a service
which hosts and distributes images. The default
registry server for Docker is Docker Hub [6] which
is hosted by Docker Inc. Command: docker
push <image>:<tag>

Pull A given container image can be retrieved
from the registry so it can be modified, build
upon, or run locally. Command: docker pull
<image>:<tag>

Run Images that are stored locally can be used to create
a container instance by running them. Command:
docker run <image>:<tag> <path to
containerized app>

B. Shifter

Shifter is a lightweight container runtime that provides
to HPC systems with an efficient and secure approach for
end-users to execute Docker images. Moreover, recent work
on Shifter [3] further extended its functionality to provide
containerized applications with a transparent and easy way
to access GPU accelerators and fast network interconnects.
The Shifter runtime provides its functionality by performing
the following operations when launching a containerized
application:

• instantiates the container using two sources: the soft-
ware environment from the image; and, the host-
specific resources that have been defined through the
Shifter’s configuration file udiroot.conf;

• provides containers with transparent access to special-
ized hardware by correctly bind mounting host-specific
libraries (CUDA and Message Passing Interface (MPI));

• launches the containerized application in user-space,
specifically using the credentials and privileges of the
user;

• integrates with the resource manager (e.g., SLURM,
ALPS) to efficiently run HPC applications at scale.

Therefore, HPC users of Docker containers can take
advantage of all the benefits of a workflow that uses Docker
to build and test container images, and leverages on Shifter
to deploy containers on HPC systems while attaining high-
performance.

III. USER WORKFLOW

Docker Hub

dockerfile

Figure 1. User workflow for building Docker containers and deploying
them with Shifter on HPC systems. Summary of the workflow steps: 1)
build container image; 2) test container with Docker; 3) Push container to
Docker Hub; 4) Pull image into HPC system; 5) Deploy container using
Shifter.

The standard workflow for using Docker and Shifter is
depicted in Figure 1 and its five steps can be summarized
as follows:

1) Build the container image using the tools provided by
the Docker. This step takes place on the researcher’s
workstation using dockerfile (the container image de-
scriptor) and the docker build tool. Moreover, the
Docker image can be based on the Linux distribution
of choice, enabling the tools that are most familiar to
the user.

2) The researcher tests the image to verify the correctness
of the software stack and the scientific simulation by
running it locally using the docker run command.
The use of dockerfiles, docker build and docker
run allow users to rapidly iterate on the dockerfile
until the application and its environment is correctly
configured.

3) Once an image has been validated using Docker, the
user can upload it to a remote registry using docker
push. Although the default registry service used by
Docker is the Docker Hub, a service provided by
Docker Inc. The use of third-party repositories is also
supported.

4) Images from the registry can be pulled by an HPC
system using shifterimg tool. When an image
pull takes place, the image is downloaded from the
registry into the Image Gateway service, where it is
flattened, converted into squashFS format (compressed
read-only file system for Linux), and stored in the
parallel file system.

5) Using the Shifter Runtime, the container can then be
instantiated using data from both the local container
image and host-specific resources as specified by
Shifter’s configuration file.

The steps described above present a workflow that merges
some of the best features of docker with shifter. On
the one hand, steps one to three of the above workflow
show that Docker can be effectively used to build and test
the container solely using the researcher laptop. Moreover,
these tools enable the use and deployment of software
environments that are familiar to the end-user. On the other
hand, steps four and five leverage on the image that was
created on the workstation, moving it to the HPC system
using shifterimg pull and then deploying it using
the shifter command. Moreover, the use of the Shifter
enables the container to take advantage of the specialized
hardware available on the HPC site.

A. Example

To illustrate the workflow described above we first present
a simple example. The objective of this example is to
build a potentially complex software stack on a container
image that can make use of the CUDA toolkit to access
the GPU resource available on the host system. To this
end we containerize the deviceQuery application, which
is a CUDA application performs the properties listing of
the CUDA devices present on the host system. This test

effectively shows that a hardware- and software-agnostic
containers can access host-specific GPU resources through
Shifter.

We start by preparing the dockerfile document that con-
tains the commands needed to assemble the image. The
example dockerfile is presented on Listing 1.

Listing 1. Example CUDA dockerfile
1 FROM nvidia/cuda:8.0
2
3 RUN apt-get update && apt-get install -y \
4 --no-install-recommends \
5 cuda-samples-$CUDA_PKG_VERSION && \
6 rm -rf /var/lib/apt/lists/*
7
8 RUN (cd /usr/local/cuda/samples/1_Utilities/

deviceQuery && make)

Of line 1 of the Listing 1, the FROM command
sets the base image to the one provided by NVIDIA
(nvidia/cuda:8.0). Upon this base image all subse-
quent instructions will be applied on. By looking at the
dockerfile of image nvidia/cuda:8.0 available from [7]
we know that this image is based on Ubuntu 16.04 Linux
distribution to which the runtime and utilities of CUDA have
been installed. Using this image as our starting point greatly
simplifies the software environment setup of our own image.
However, the container image prepared by NVIDIA does not
provide the deviceQuery and other utilities. To enable these
applications we can obtain the application source code using
apt-get (see lines 3 to 6 of Listing 1). Finally, line 8 performs
the compilation of our test application.

The next step is to build the image and test the container
on a laptop using nvidia-docker [8], an extension to the
Docker runtime developed by NVIDIA to provide access
to the GPU. These steps are shown in Listing 2.

Listing 2. Build dockerfile and test container on laptop
1 $ nvidia-docker build -t "ethcscs/dockerfiles

:cudasamples8.0" .
2
3 $ nvidia-docker run ethcscs/dockerfiles:

cudasamples8.0 /usr/local/cuda/samples/1
_Utilities/deviceQuery/deviceQuery

4
5 $ nvidia-docker push ethcscs/dockerfiles:

cudasamples8.0

From Listing 2 we observe the following: line 1 shows the
command used for building the image, the -t flag sets the
name and tag of the image, while the dot (.) indicates to use
the dockerfile from the current directory. After that we can
run the containerized application using the run command
as it is shown in line 3; on line 5 we push the image to
Docker Hub.

The output of the containerized deviceQuery applica-
tion running from the container using nvidia-docker on
a Laptop is shown in Listing 3. The output has been trimmed
to highlight the GPU devices detected.

Listing 3. Output of deviceQuery on Laptop
1 ./deviceQuery Starting...
2 [...]
3 Detected 1 CUDA Capable device(s)
4
5 Device 0: "Quadro K1100M"
6 [...]

We now briefly compare the pulling and execution of
the same container image on an HPC system. Consider
Listing 4, where we pull and execute using the tools provided
by Shifter on an HPC system: line 1 shows the usage
of shifterimg to download the image; line 3 makes
use of SLURM’s srun command to run the containerized
deviceQuery application using shifter.

Listing 4. deviceQuery image on HPC system
1 $ shifterimg pull ethcscs/dockerfiles:

cudasamples8.0
2
3 $ srun -C gpu shifter --image=ethcscs/

dockerfiles:cudasamples8.0 ./deviceQuery

Listing 5 shows the output after executing the container
with Shifter on Piz Daint, and the containerized application
correctly detects the NVIDIA Tesla P100 GPU available on
the system.

Listing 5. Output of deviceQuery on HPC system
1 ./deviceQuery Starting...
2 [...]
3 Detected 1 CUDA Capable device(s)
4
5 Device 0: "Tesla P100-PCIE-16GB"
6 [...]

IV. HPC WORKFLOW WITH CONTAINERS

Achieving high-performance and portability of container-
ized applications by running Docker containers with Shifter
has been demonstrated in [3]. Hence instead of focusing the
discussion on these aspects we will center on the different
HPC workflows that are enabled by the use of Docker and
Shifter. This section highlights two crucial aspects of the
workflows: first, the creation of container images; second,
using Docker containers to access HPC resources. Moreover,
through this section we will cover the following:

• Building images with complex dependencies.
• Using container images that have already been created

by a third party.
• Launching containerized applications with SLURM.
• Using MPI and fast network interconnects.
• Using CUDA to access GPUs.
• Applications that use both CUDA and MPI.
• The usage of containers as portable compilation units.
The rest of this section is organized as follows: first we

present the methodology for building and running contain-
ers; then we present a variety of use cases that highlight the
points above using different workflows.

A. Methodology

We evaluate a number of containerized applications from
images that have been built with Docker on a Laptop or
that are provided by trusted third parties when possible.
Shifter is only used to run the containerized applications on
HPC infrastructure. We make use two systems throughout
this section: a Laptop to build and test Docker images,
and Piz Daint to run the containerized applications. The
configuration of these systems is as follows:
Laptop specification

• Model: Lenovo R© W540 mobile workstation.
• Processor: Intel R©CoreTMi7-4700MQ processor.
• Memory: 8 GB of RAM.
• GPU: Nvidia R©QuadroTMK110M GPU with 2 GB of

memory.
• OS: CentOS 7 with Linux kernel 3.10.0.
• Libraries: CUDA 8.0, MPICH 3.2.

Piz Daint specification
• Model: hybrid Cray XC50/XC40.
• Processor: Intel R© Xeon R© E5-2690v3 processor.
• Memory: 64 GB of RAM.
• GPU: Nvidia R© Tesla R© P100 with 16 GB of memory.
• Network: Cray Aries interconnect under a Dragonfly

topology.
• OS: Cray Linux Environment 6.0 UP02 [9] with Linux

kernel 3.12.60.
• Libraries: CUDA 8.0, and Cray’s MPI Library MPT

7.5.0.
Piz Daint is currently the eighth fastest supercomputer in the
world [10] and provides its users with support to execute
Docker containers through Shifter.

B. N-body: CUDA application

A fast N-body simulation fully implemented in CUDA
was developed by NVIDIA as part of the CUDA Soft-
ware Development Kit [11]. This application simulates the
dynamical evolution of a system of particles under the
influence of gravity. It is compute intensive and makes
efficient use of GPUs to perform the calculations in parallel.

Listing 6. N-body dockerfile
1 FROM nvidia/cuda:8.0
2
3 RUN apt-get update && apt-get install -y --no

-install-recommends \
4 cuda-samples-$CUDA_PKG_VERSION && \
5 rm -rf /var/lib/apt/lists/*
6
7 RUN (cd /usr/local/cuda/samples/5_Simulations

/nbody && make)

The preparation of the container image using a
dockerfile is almost identical to the one presented in
Listing 2. However, in Listing 6 we compile the N-body
application instead (see line 7).

We can now build and push the image into the main
registry, as seen in lines 1 and 3 of Listing 7.

Listing 7. Build image and push it to the main Docker registry
1 $ docker build -t "ethcscs/dockerfiles:

cudasamples8.0" .
2
3 $ docker push ethcscs/dockerfiles:

cudasamples8.0

Once the image has been built from the dockerfile
and pushed to the registry it is possible to download the
container image to Piz Daint using the shifterimg tool.
The image can be deployed using the shifter tool, as it
can be seen in Listing 8 line 3 and line 5 respectively. Note
that in order to use Shifter in Piz Daint it is first necessary
to load the module that makes the tool available, as it can
be seen in line 1 of Listing 8.

Listing 8. Pull and run N-body container
1 $ module load shifter/17.03.00
2
3 $ shifterimg pull ethcscs/dockerfiles:

cudasamples8.0
4
5 $ srun -N 1 -C gpu shifter --image=ethcscs/

dockerfiles:cudasamples8.0 /usr/local/
cuda/samples/bin/x86_64/linux/release/
nbody -benchmark -fp64 -numbodies=200000

C. TensorFlow: a third-party image using CUDA

TensorFlow is an Open Source software framework for
machine learning that was developed by Google. Computa-
tions in TensorFlow are expressed through its API as data
flow graphs and it provides an implementation to run these
computations on a range of systems. Moreover it is able
to make use of GPUs using CUDA. For convenience, the
developers of TensorFlow also distribute the TensorFlow
application and all dependencies with support for NVIDIA
CUDA as a Docker container image through Docker Hub.

We use the official TensorFlow Docker image that is
available through Docker Hub under the tag 1.0.0-devel-
gpu-py3 (see Listing 9). The official image is based on the
Ubuntu 14.04 Linux distribution with the following packages
installed: Python 3.4.3, Nvidia CUDA Toolkit 8.0.44, and
NVIDIA cuDNN 5.1.5.

Listing 9. Download official TensorFlow image
shifterimg pull docker:tensorflow/tensorflow

:1.0.0-devel-gpu-py3

We use the MNIST database [12], a collection of images
that represent handwritten digits, to test the training an
image recognition model. In Listing 10 we obtain the model
from the TensorFlow repository (line 1) and data (line 3),
storing the model and data on the home folder on Piz Daint.
The implemented test training model makes use of 60,000
training image examples and 10,000 test examples.

Listing 10. TensorFlow model and data for MNIST
1 wget https://raw.githubusercontent.com/

tensorflow/models/master/tutorials/image/
mnist/convolutional.py

2
3 cp -r /apps/daint/UES/mnist/data/ .

We can now run the container as seen in Listing 11 on a
single node of Piz Daint: we schedule the container to run
with SLURM using the Shifter runtime.

Listing 11. Execution of containerized TensorFlow
srun -C gpu -N1 -n1 shifter --image=

tensorflow/tensorflow:1.0.0-devel-gpu-py3
python3 convolutional.py

Executing the container through Shifter will make the
GPU NVIDIA P100 available to the container. Table I com-
pares the wall-clock time of running the MNIST TensorFlow
test on the Laptop vs Piz Daint. For the Laptop we present
the time in seconds while for Piz Daint we present the
relative speedup with respect to the Laptop results.

Table I
CONTAINERIZED TENSOFFLOW PERFORMANCE RESULTS ON THE
LAPTOP PRESENTED IN SECONDS AND THE RELATIVE SPEEDUP

OBTAINED ON A SINGLE NODE OF PIZ DAINT FOR THE MNIST TEST.

Laptop Piz Daint

MNIST 613 17.17x

D. Trilinos: library using MPI

Trilinos [13] is an open-source project that provides a
software framework for solving scientific and engineering
application by using specialized software packages. Trilinos
packages are self-contained and each has their own set
of dependencies. The Epetra package implements parallel
linear algebra solvers and provides a core foundation for
Trilinos-based applications.

In this case we build a container with Trilinos’ Epetra
package and use one of its performance tests to demonstrate
a non-trivial MPI workflow. BasicPerfTest from Epetra
builds a system of equations for a 2D PDE finite difference
problem and solves it using a LU-based solver.

The dockerfile used to prepare the Trilinos container
image can be seen in Listing 16. Please note that due to the
size of the dockerfile this has been added as an appendix to
this paper. As it can be seen in the Trilinos dockerfile, our
image is built based on Debian Jessie Linux distribution onto
which we install basic development tools, MPICH 3.1.5, the
Trilinos Epetra package, and finaly the basicPerfTest
benchmark. As we have seen before, building, running, and
pushing the container image starting from the dockerfile is
straightforward by using the commands: docker build,
docker run, docker push (see Listing 12).

Listing 12. Using docker to build from dockerfile, run, and push
container image to Docker Hub.

1 $ docker build -t ethcscs/dockerfiles:
trilinos-epetrampi-benchmark .

2
3 $ docker run --rm ethcscs/dockerfiles:

trilinos-epetrampi-benchmark
4
5 $ docker push ethcscs/dockerfiles:trilinos-

epetrampi-benchmark

Pulling and running the container image is as what we
saw with the previous examples with the only difference
that this example does not make use of the GPU but the
fast network interconnect through MPI. Listing 13 shows
the following: line 1 downloads the container from Docker
Hub; line 3 uses SLURM to allocate 128 MPI processes on
four nodes of the multicore partition on Piz Daint (in this
partition, each node has 36 cores and no GPU). Also, on
the SLURM allocation we make use of two Shifter-specific
options that set the container image to be used (--image)
and enable Shifter’s MPI-support (--shifter-mpi); line
5 uses SLURM srun to schedule the execution of the
containerized application with Shifter. Please note that the
image and MPI support were set with salloc.

Shifter provides the container with access to the compute
node’s MPI implementation in order to use the Aries Inter-
connect of Piz Daint. To take advantage of this feature, the
MPI installed in the container (and dynamically linked to
your application) has to be ABI-compatible with the com-
pute node’s MPI on Piz Daint. To meet the required ABI-
compatibility, we recommend that the container application
uses one of the following MPI implementations:

• MPICH v3.1 (Feburary 2014)
• MVAPICH2 2.2 (September 2016)
• Intel MPI Library v5.0 (June 2014)

Listing 13. Pull and run the Trilinos container image with Shifter
1 $ shifterimg pull ethcscs/dockerfiles:

trilinos-epetrampi-benchmark
2
3 $ salloc -C mc -n 128 -N 4 --image=ethcscs/

dockerfiles:trilinos-epetrampi-benchmark
--shifter-mpi

4
5 $ srun shifter /opt/Trilinos-trilinos-release

-12-10-1/build/packages/epetra/test/
BasicPerfTest/Epetra_BasicPerfTest_test.
exe 225 450 16 8 5 -v

Results of running the BasicPerfTest on both the
Laptop system (4 cores) and Piz Daint (4 nodes on 32 cores
each) are presented in Table II.

E. PyFR: Complex dependency set with CUDA and MPI

PyFR [14] is a Python code for solving high-order compu-
tational fluid dynamics on unstructured grids. The numerical
method used by this software has shown efficient execution
on GPUs and parallel scalability on HPC systems. Moreover,
this project was one of the Gordon Bell Prize finalist in 2016.

Table II
CONTAINERIZED TRILINOS PERFORMANCE RESULTS ON THE LAPTOP
(USING 4 CORES) PRESENTED MFLOPS AND THE RELATIVE SPEEDUP

OBTAINED PIZ DAINT.

Norm2 Dot Updates

Laptop 3176.41 3306.74 1843.24

Piz Daint 30.9x 18.4x 15.9x

We base the Docker image for this application on the
official Ubuntu 16.04 Docker image to which we installed
basic software development tools and all PyFR dependen-
cies: Python 3.5.2, METIS, NVIDIA CUDA Toolkit 7.5,
and MPICH 3.1.4. The dockerfile can be seen in
Listing 17, which due to its length has been added as part
of the appendix. Building, running, and pushing the Docker
container image is as we have seen in previous examples of
these steps. In the following, we will discuss the execution
of the PyFR application on multiple nodes with both GPU
and MPI support enabled.

Listing 14. Download PyFR container image with Shifter
$ shifterimg pull ethcscs/dockerfiles:pyfr

-1.5.0-cuda7.5

As an illustration, we will run the containerized applica-
tion from the PyFR image that we just downloaded. For
this, we will schedule a SLURM job that makes use of
two GPU nodes of Piz Daint (see line 1 of Listing 15). As
with previous examples, SLURM options are set to enable
Shifter’s use of GPU, MPI, and the image. As it can be seen
in line 3, to run the MPI job SLURM srun is set to the
number of processes (-n 2) and uses shifter to execute
the pyfr application along with its command-line options.

Listing 15. Run PyFR container image with Shifter
1 $ salloc -N 2 -C gpu --image=ethcscs/

dockerfiles:pyfr-1.5.0-cuda7.5 --shifter-
mpi

2
3 $ srun -n 2 shifter pyfr run -b cuda -p

euler_vortex_2d.pyfrm euler_vortex_2d.ini

The chosen test case calculates the 3D flow over a turbine
blade. The simulation domain was discretized with a mesh
composed of 114, 265 cells and 1, 154, 120 points using a
total of 10GB of memory. The simulation itself makes use of
the GPU through a CUDA backend and can run in parallel on
multiple nodes using MPI. Due to the size of the problem the
Laptop system was not able to run this simulation. However,
the Laptop system was indeed used to build the container
and to test the application through some trial simulation test.
On Piz Daint, the simulation was carried out using multiple
nodes and its parallel efficiency is reported in Table III.

F. Portable compilation units

The performance of some applications can strongly de-
pend on the targeted optimization of the underlying libraries.

Table III
PYFR SIMULATION OF A 3D FLOW SOLVER OVER A TURBINE BLADE

WITH A MESH DISCRETIZATION OF 1, 154, 120 MESH POINTS, PROBLEM
SIZE SUITABLE FOR UP TO 4 NODES. RESULTS PRESENT THE PARALLEL
EFFICIENCY OF STRONG SCALING THE TEST CASE UP TO 16 NODES ON

PIZ DAINT.

System 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs

Piz Daint 1.0 0.975 0.964 0.927 0.874

A good example of such situation is the Linpack bench-
mark [15], which measures a system’s floating point perfor-
mance by solving a dense n by b system of linear equations.
HPL is a portable C implementation of HPLinpack, and
requires Basic Linear Algebra Subprograms (BLAS) and
MPI libraries. Moreover, the most important BLAS sub-
routine from performance considerations is Double-precision
General Matrix Multiply (DGEMM). Therefore, it is crucial
for Linpack to have access to an optimized BLAS library.
However, there is no ABI compatibility for different BLAS
libraries (see Section IV-D). For this reason, the chosen
library has to be compiled and linked before its execution.

Typically, a BLAS implementation that has been tuned
extensively for performance can be found on HPC machines.
The performance of such a BLAS library is difficult to
match and not using the provided BLAS will usually not
exploit the full potential of a machine. As such, this directly
conflicts with the idea of a portable container. We therefore
pursue an approach where the container environment does
not include an optimized BLAS. It instead provides the
software environment to build the application and link it to
the host-optimized BLAS available on the host. To this end,
the container is built so that it contains the HPL sources,
an MPI implementation and the necessary build tools to
compile and link the HPL binary. However, the resulting
binary is not included in the resulting image, meaning that
a build command has to be executed first. The build is
performed on the host file system so that the resulting binary
environment is persistent. Once the build is successful, a run
command can be executed in the container, again specifying
the HPL binary path and the HPL.dat on the host system.

The options used by the hpl_build script that compile
and link the containerized HPL are as follows:

--linear-algebra-lib <blas library path> \
--linear-algebra-include <blas header path> \
--linker-option <flags> \
--build-path <host fs build directory>

The following command shows an example usage for
building HPL using the host optimized OpenBlas [16]:

shifter \
--volume=/scratch/linus/fsrootcopy:/hostfs \
--image=gronerl/hpl-blas-on-host-fs \
hpl_build \

--linear-algebra-include /cm/shared/apps/
openblas/0.2.15/include/openblas/ \

Figure 2. HPL Linpack benchmark running from a Portable Compilation
Environment using three different BLAS versions on eight nodes of Piz
Daint.

--linear-algebra-lib /cm/shared/apps/openblas
/0.2.15/lib/libopenblasp64.a \

--build-path /scratch/linus/hpl

After the compilation phase finished, the same container
is used to execute the application. In the following example,
the Linpack parameter file should be placed in the same
directory than the xhpl binary.

srun -n 4 -mpi=pmi2 --partition=shifter
shifter --mpi --volume=/scratch/linus/
fsrootcopy:/hostfs --image=gronerl/hpl-
blas-on-host-fs xhpl

Figure 2 shows the HPL benchmark results using three
different BLAS libraries versions (CALDGEMM [17],
MKL [18] and nvBLAS [19]) on eight nodes of Piz Daint.
The same portable compilation environment was used for the
compilation and later execution of the xhpl binary using
the procedures shown earlier.

The initial results clearly show how the performance
improves depending on the library version used during the
compilation-and-linking phase of the portable compilation
environment.

V. CONCLUSION

In this work we described the experiences of building
and testing containers with Docker for scientific work-
flows, while taking advantage of the performance portability
provided by Shifter to deploy these containers on HPC
infrastructures like Piz Daint. We have covered a variety
of scientific-application workflows which can be used as a
reference by users who would like to take advantage of the
benefits that containers provide.

The performance portability of these workflows, as well as
their performance results, support the idea that the proposed
Docker-Shifter tool set is a viable alternative for the deploy-
ment of non-trivial scientific applications on HPC systems.

Furthermore, the presented workflows describe container
creation on a laptop and their deployment at scale on Piz
Daint, also taking advantage of the specialized hardware
available: Cray Aries interconnect and NVIDIA Tesla P100
GPU accelerators.

Recently, CSCS users have already started using Shifter
on Piz Daint and their feedback has so far been on the
positive side.

VI. ACKNOWLEDGEMENT

The Systems Integration group at CSCS would like to
acknowledge Linus Groner’s contribution for the implemen-
tation and testing of the Portable Compilation Environments
presented in Section IV-F.

REFERENCES

[1] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs.
lightweight virtualization: a performance comparison,” in
Cloud Engineering (IC2E), 2015 IEEE International Confer-
ence on. IEEE, 2015, pp. 386–393.

[2] D. M. Jacobsen and R. S. Canon, “Shifter: Containers for
HPC,” in Cray Users Group Conference (CUG’16), 2016.

[3] L. Benedicic, F. A. Cruz, A. Madonna, and K. Mari-
otti, “Portable, high-performance containers for hpc,” arXiv
preprint arXiv:1704.03383, 2017.

[4] Docker, “Docker documentation,” available at:
https://docs.docker.com/ (March 2017).

[5] Docker, “Base command for the docker cli,” available at:
https://docs.docker.com/engine/reference/commandline/docker/
(March 2017).

[6] ——, “Docker hub,” available at: https://hub.docker.com/
(March 2017).

[7] “Dockerfile for nvidia/cuda:8.0,” available at:
https://gitlab.com/nvidia/cuda/blob/ubuntu16.04/8.0/runtime/Dockerfile
(Mar. 2017).

[8] NVIDIA, “Build and run Docker contain-
ers leveraging NVIDIA GPUs,” available at:
https://github.com/NVIDIA/nvidia-docker (Feb. 2017).

[9] CRAY, “XC Series System Administration Guide (CLE 6.0),”
available at: https://pubs.cray.com (Mar. 2017).

[10] Top500.org, “Top500 list - november 2016,” available at:
https://www.top500.org/list/2016/11/ (March 2017).

[11] L. Nyland, M. Harris, J. Prins et al., “Fast N-Body Simulation
with CUDA,” GPU gems, vol. 3, no. 31, pp. 677–695, 2007.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[13] Trilinos project, “Trilinos Project Home Page,” available at:
https://trilinos.org/ (Mar. 2017).

[14] F. D. Witherden, B. C. Vermeire, and P. E. Vincent, “Hetero-
geneous computing on mixed unstructured grids with PyFR,”
Computers & Fluids, vol. 120, pp. 173–186, 2015.

[15] J. J. Dongarra, P. Luszczek, and A. Petitet, “The linpack
benchmark: past, present and future,” Concurrency and Com-
putation: practice and experience, vol. 15, no. 9, pp. 803–820,
2003.

[16] “OpenBLAS: An optimized BLAS library,” available at:
http://www.openblas.net/ (Mar. 2017).

[17] “Portable and Flexible DGEMM Library for GPUs,” available
at: https://github.com/davidrohr/caldgemm (Mar. 2017).

[18] “Intel Math Kernel Library (Intel MKL),” available at:
https://software.intel.com/en-us/intel-mkl (Mar. 2017).

[19] “NVBLAS: GPU-accelerated BLAS implementation,” avail-
able at: http://docs.nvidia.com/cuda/nvblas/#abstract (Mar.
2017).

APPENDIX

Listing 16. Trillinos dockerfile
1 FROM debian:jessie
2
3 RUN apt-get update
4 RUN apt-get install -y build-essential \
5 gfortran \
6 libopenblas-dev \
7 cmake \
8 wget \
9 ca-certificates \
10 --no-install-recommends
11
12 # retrieve Trilinos
13 RUN wget -q https://github.com/trilinos/Trilinos/archive/trilinos-release-12-10-1.tar.gz \
14 && tar xf trilinos-release-12-10-1.tar.gz -C /opt \
15 && rm -rf trilinos-release-12-10-1.tar.gz
16 ENV TRILINOS_DIR /opt/Trilinos-trilinos-release-12-10-1
17
18 # install MPICH
19 RUN wget -q http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz \
20 && tar xf mpich-3.1.4.tar.gz \
21 && (cd mpich-3.1.4 \
22 && ./configure --disable-fortran --enable-fast=all,O3 --prefix=/usr \
23 && make -j$(nproc) \
24 && make install) \
25 && ldconfig \
26 && rm mpich-3.1.4.tar.gz
27
28 # add epetra MPI benchmark (the benchmark developed by sjdeal)
29 COPY CMakeLists.txt $TRILINOS_DIR/packages/epetra/test/SjdealBenchmark/CMakeLists.txt
30 COPY cxx_main.cpp $TRILINOS_DIR/packages/epetra/test/SjdealBenchmark/cxx_main.cpp
31 RUN sed -i $TRILINOS_DIR/packages/epetra/test/CMakeLists.txt -e ’/IF (NOT

Trilinos_NO_32BIT_GLOBAL_INDICES)/aADD_SUBDIRECTORY(SjdealBenchmark)’
32
33 # build trilinos + sjdeal’s benchmark
34 RUN mkdir $TRILINOS_DIR/build \
35 && (cd $TRILINOS_DIR/build \
36 && cmake \
37 -DCMAKE_BUILD_TYPE=RELEASE \
38 -DCMAKE_INSTALL_PREFIX=../install \
39 \
40 -DTPL_ENABLE_MPI:BOOL=ON \
41 -DMPI_BASE_DIR:PATH=/usr/lib \
42 \
43 -DTrilinos_ENABLE_OpenMP:BOOL=ON \
44 -DTrilinos_ENABLE_TESTS:BOOL=ON \
45 -DTrilinos_ENABLE_ALL_PACKAGES:BOOL=OFF \
46 -DTrilinos_ENABLE_Epetra:BOOL=ON \
47 -DTrilinos_ENABLE_CXX11=ON \
48 -DTrilinos_ASSERT_MISSING_PACKAGES=OFF \
49 -DBUILD_SHARED_LIBS:BOOL=OFF \
50 \
51 -DCMAKE_VERBOSE_MAKEFILE:BOOL=OFF \
52 -DTrilinos_VERBOSE_CONFIGURE:BOOL=OFF \
53 .. \
54 && make -j$(nproc))

Listing 17. PyFR dockerfile
1 FROM ubuntu:16.04
2
3 LABEL com.pyfr.version="1.5.0"
4 LABEL com.python.version="3.5"
5
6 # Install system dependencies
7 RUN apt-get update && apt-get install -y \
8 unzip \
9 wget \
10 build-essential \
11 gfortran-5 \
12 strace \
13 realpath \
14 libopenblas-dev \
15 liblapack-dev \
16 python3-dev \
17 python3-setuptools \
18 python3-pip \
19 libhdf5-dev \
20 libmetis-dev \
21 --no-install-recommends && \
22 rm -rf /var/lib/apt/lists/*
23
24
25 # Label image so that nvidia-docker will source driver libraries from host
26 LABEL com.nvidia.volumes.needed="nvidia_driver"
27
28 # Install CUDA Toolkit 8.0
29 ENV CUDA_VERSION 8.0
30 LABEL com.nvidia.cuda.version="8.0"
31
32 RUN NVIDIA_GPGKEY_SUM=d1be581509378368edeec8c1eb2958702feedf3bc3d17011adbf24efacce4ab5 && \
33 NVIDIA_GPGKEY_FPR=ae09fe4bbd223a84b2ccfce3f60f4b3d7fa2af80 && \
34 apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/

ubuntu1604/x86_64/7fa2af80.pub && \
35 apt-key adv --export --no-emit-version -a $NVIDIA_GPGKEY_FPR | tail -n +5 > cudasign.pub

&& \
36 echo "$NVIDIA_GPGKEY_SUM cudasign.pub" | sha256sum -c --strict - && rm cudasign.pub && \
37 echo "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64 /" >

/etc/apt/sources.list.d/cuda.list
38
39 ENV CUDA_PKG_VERSION 8-0=8.0.44-1
40 RUN apt-get update && apt-get install -y --no-install-recommends \
41 cuda-core-$CUDA_PKG_VERSION \
42 cuda-misc-headers-$CUDA_PKG_VERSION \
43 cuda-command-line-tools-$CUDA_PKG_VERSION \
44 cuda-cublas-dev-$CUDA_PKG_VERSION \
45 cuda-curand-dev-$CUDA_PKG_VERSION \
46 cuda-cudart-dev-$CUDA_PKG_VERSION \
47 cuda-driver-dev-$CUDA_PKG_VERSION && \
48 ln -s cuda-$CUDA_VERSION /usr/local/cuda && \
49 rm -rf /var/lib/apt/lists/*
50
51 RUN echo "/usr/local/cuda/lib64" >> /etc/ld.so.conf.d/cuda.conf && \
52 ldconfig
53
54 RUN echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && \
55 echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf
56
57 ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:${PATH}
58 ENV LD_LIBRARY_PATH /usr/local/nvidia/lib:/usr/local/nvidia/lib64${LD_LIBRARY_PATH}
59
60 # Install MPICH 3.1.4

61 RUN wget -q http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz && \
62 tar xvf mpich-3.1.4.tar.gz && \
63 cd mpich-3.1.4 && \
64 ./configure --disable-fortran --prefix=/usr && \
65 make -j$(nproc) && \
66 make install && \
67 cd .. && \
68 rm -rf mpich-3.1.4.tar.gz mpich-3.1.4 && \
69 ldconfig
70
71 # Create new user
72 RUN useradd docker
73 WORKDIR /home/docker
74
75 # Install Python dependencies
76 RUN pip3 install numpy>=1.8 \
77 pytools>=2016.2.1 \
78 mako>=1.0.0 \
79 mpi4py>=2.0 && \
80 pip3 install pycuda>=2015.1 \
81 h5py>=2.6.0 && \
82 wget -q -O GiMMiK-2.1.tar.gz https://github.com/vincentlab/GiMMiK/archive/v2.1.tar.gz && \
83 tar -xvzf GiMMiK-2.1.tar.gz && \
84 cd GiMMiK-2.1 && \
85 python3 setup.py install && \
86 cd .. && \
87 rm -rf GiMMiK-2.1.tar.gz GiMMiK-2.1
88
89 # Set base directory for pyCUDA cache
90 ENV XDG_CACHE_HOME /tmp
91
92 # Install PyFR
93 RUN wget -q -O PyFR-1.5.0.zip http://www.pyfr.org/download/PyFR-1.5.0.zip && \
94 unzip -qq PyFR-1.5.0.zip && \
95 cd PyFR-1.5.0 && \
96 python3 setup.py install && \
97 cd .. && \
98 rm -rf PyFR-1.5.0.zip PyFR-1.5.0

