
Experiences in deploying and running Shifter

Containers for HPC, Cambridge University

Lucas Benedicic, Felipe A. Cruz, Alberto Madonna, Kean Mariotti – Systems Integration Group

June 30th, 2017

Outline

1. Overview

2. Docker

3. Shifter

4. Workflows

5. Use cases

6. Conclusion

2

Overview

3

Motivation

▪ Bring Docker containers to production on Piz Daint.

▪ Docker: flexible and self-contained execution environments.

▪ Tool that enable workflows for some users.

▪ Part of an ecosystem that provides value to users.

▪ The Systems Integration group focuses on extending Shifter’s container runtime.

▪ Usability.

▪ Robustness.

▪ High performance.

4

In a nutshell

▪ Production workflows using Docker and Shifter:

1. Build and test containers with Docker on a Laptop.

2. Run with high-performance with Shifter on Piz Daint securely.

5

GPU Support

6

$> module show cudatoolkit

…

setenv CRAY_CUDATOOLKIT_DIR /opt/nvidia/cudatoolkit8.0/8.0.54_2.2.8_ga620558

…

$> srun –N1 singularity --nv –-bind \

/opt/nvidia/cudatoolkit8.0/8.0.54_2.2.8_ga620558 my_cuda_image.img cudaApp

GPU Support: a user’s perspective

▪ Singularity

7

$> module show cudatoolkit

…

setenv CRAY_CUDATOOLKIT_DIR /opt/nvidia/cudatoolkit8.0/8.0.54_2.2.8_ga620558

…

$> srun –N1 singularity --nv –-bind

/opt/nvidia/cudatoolkit8.0/8.0.54_2.2.8_ga620558 my_cuda_image.img cudaApp

GPU Support: a user’s perspective

▪ Singularity

8

$> srun –N1 shifter –image=my_cuda_image cudaApp

▪ Shifter

$> module show cudatoolkit

…

setenv CRAY_CUDATOOLKIT_DIR /opt/nvidia/cudatoolkit8.0/8.0.54_2.2.8_ga620558

…

$> srun –N1 singularity --nv –-bind /opt/nvidia/cudatoolkit8.0/8.0.54_2.2.8_ga620558

my_cuda_image.img cudaApp

GPU Support: a user’s perspective

▪ Singularity

9

$> srun –N1 shifter –image=my_cuda_image cudaApp

▪ Shifter

root@daint> cat udiRoot.conf

…

siteResources=/opt/shifter/site-resources/cuda:/opt/shifter/site-resources/nvidia

…

Shifter Internals

10

Shifter Internals

11

Use case: TensorFlow (GPU / Third party container)

12

TensorFlow

▪ Software library capable of building and training neural networks using CUDA.

▪ Official TensorFlow image from DockerHub (not modified).

▪ TensorFlow has a rapid release cycle (Once a week new build available!).

▪ Ready to run containers.

▪ Performance relative to the Laptop wall-clock time of image classification tests.

13

Test case Laptop* Piz Daint (P100)

MNIST, TF tutorial 613 [seconds] 17.17x

*Laptop run using nvidia-docker

Use case: Large Hadron Collider

14

Atlas and LHC

▪ CSCS operates a cluster running experiments of the LHC at CERN

▪ Jobs expect a RHEL-compatible OS and precompiled software stack

▪ Shifter reproduces the certified software stach on Piz Daint (Cray XC50)

15

Use case: OSU benchmark (MPI)

16

OSU Benchmark

▪ Host MPI:

▪ Cray MPT 7.5.0

▪ Cray Aries Interconnect

▪ Container MPI:

▪ MPICH v3.1 (A)

▪ MVAPICH2 2.2 (B)

▪ Intel MPI Library (C)

▪ Native performance!

17

$ srun -n2 –N2 shifter --mpi --image=osu-benchmarks-image ./osu_latency

Use case: PyFR (GPU + MPI)

18

PyFR

▪ Python based framework for solving advection-diffusion type problems on

streaming architectures. 2016 Gordon Bell Prize finalist (Highly scalable).

▪ GPU- and MPI-accelerated runs using containers.

▪ Complex build (100 lines Dockerfile) and test on Laptop.

▪ Production-like run on Piz Daint.

▪ Parallel efficiency for a 10-GB test case on different systems (4 node setup).

19

Number of nodes Piz Daint

(P100)

1 1.000

2 0.975

4 0.964

8 0.927

16 0.874

Use case: Portable compilation units

20

Vanilla Linpack with specialized BLAS

▪ Some application performance

depends on targeted

optimization of libraries.

▪ Use container to pack

application environment.

▪ Two stage: compile first (link

against host libs), then run.

21

Vanilla Linpack with specialized BLAS

▪ Some application performance

depends on targeted

optimization of libraries.

▪ Use container to pack

application environment.

▪ Two stage: compile first (link

against host libs), then run.

▪ Proof of concept: pack vanilla

Linpack, compile specialized

BLAS before run.

22

Conclusion

23

Conclusion

▪ The showed use cases highlighted:

▪ pull and run containers;

▪ high-performance containers;

▪ access to hardware accelerators like GPUs;

▪ use of high-speed interconnect through MPI;

▪ portable compilation environments.

24

Conclusion

▪ The showed use cases highlighted:

▪ pull and run containers;

▪ high-performance containers;

▪ access to hardware accelerators like GPUs;

▪ use of high-speed interconnect through MPI;

▪ portable compilation environments.

▪ Linux container technology is here to stay

▪ >95% of the nice container features are available on all implementations

▪ REMEMBER: the decision about which technology to choose should be driven by the

workflows within your organization!

25

Soon to be announced …

26

Thank you for your attention

27

